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ACCURACY O F  F'INITE.ELEMENT APPROXIMATIONS 

TO STRUCTURAL  PROBLEMS 

By Joseph E. Walz, Robert E. F'ulton, Nancy Jane Cyrus, 
and  Richard T. Eppink 

Langley  Research  Center 

SUMMARY 

This  paper  reports on a theoretical  investigation of the  convergence  properties of 
several  finite  element  approximations  in  current  use  and assesses the  magnitude of the 
principal  errors  resulting  from  their  use  for  certain  classes of structural  problems. 
The  method is based on classical   order of error  analyses commonly  used  to  evaluate 
finite  difference  methods.  Through  the  use of Taylor  series  the  differential  or  partial 
differential  equations which represent  the  convergence  and  principal  error  characteris- 
t ics  of the  finite  element  equations are found. These  resulting  equations are then  com- 
pared with known equations  governing  the  continuum  and  the e r r o r   t e r m s  are evaluated 
for  selected  problems.  Finite  elements  for  bar,  beam,  plane stress, and  plate  bending 
problems  are  studied as well as the  use of straight  or  curved  elements  to  approximate 
curved  beams.  The  results of the  study  provide  basic  information on the  effect of inter- 
element  compatibility,  unequal  size  elements,  discrepancies in triangular  element 
approximations,  flat  element  approximations  to  curved  structures,  and  the  number of 
elements  required  for a desired  degree of accuracy. 

INTRODUCTION 

Finite  element  methods  have  been  used  for  many  years  with good success  in  the 
analyses of complex  structures  and  many  aerospace  structures  are  designed on the  basis 
of these  analyses. Although the  use of these  methods is widespread, not  enough is known 
of the  theoretical  accuracy  and  convergence  properties of finite  element  models when 
used  to  represent  structures.  Accuracy  studies are usually  based on numerical  solutions 
to  specific  problems  for  comparison with known results.  Convergence  studies are car- 
ried out by investigating  the  convergence of the  numerical  results as the  number of ele- 
ments is increased. (See ref. 1, for  example.)  Such  methods,  while  valuable  in  providing 
a cursory  assessment of the  adequacy of various  model  approximations, are heavily 
dependent on the  numerical  data  and  the  problem  studied  and  may  obscure  the  true 



character of the  approximation.  More  basic  information is needed on the  accuracy  and 
convergence  properties of various  finite  elements for structural  approximations. 

The  purpose of the  present  paper is to  report  on an  analytical  investigation of the 
accuracy of several  finite  element  stiffness  method  approximations  in  current  use  and  to 
assess the  magnitude of the  errors  result ing  from  the  use of these  approximations  for 
certain  classes of structural  problems.  The  present  paper  includes  results which were 
summarized  in  references  2  and 3 and  in  addition  provides a comprehensive  explanation 
of the  background  details of the  error  analysis  procedure which led to  these  results.  
The  method  used is based on classical order  of error  analyses commonly  used  to  evaluate 
the  discretization  errors of finite  difference  methods.  Through  the  use of Taylor series 
the  ordinary or  partial  differential  equations are found from which the  convergence  and 
error  characterist ics of the  finite  element  equations  can be determined.  These  resulting 
equations are compared  with  the known continuum  equations  governing  the  structure. 
The  discretization  error  in  the  finite  element  approximation is evaluated  for a limited 
class  of deflection  and  vibration  problems  to  provide  simple  formulas  for  the  size of an 
element  required  to  obtain a certain  degree of accuracy. (See refs. 4 and 5.) Finite 
elements  for  bar,  beam,  plane  stress,  and  plate bending problems  are  studied as well as 
the  use of straight  and  curved  elements  to  approximate a curved  beam. 

SYMBOLS 

A 

a, b 

B 

C 

D 

E 

F 

F X J  Fy 

h 

2 

cross-sectional area of one-dimensional  element 

length of rectangular  panel  in  x-  and  y-directions,  respectively 

extensional  stiffness of plate, - Et 
1 - 1.2 

constant 
n 

bending stiffness of plate, Et' 
12(1 - 1.2) 

Young's modulus 

finite  element  nodal  force 

nodal  force  in  x-  and  y-directions,  respectively, of plane stress element 

reference  length of finite  element 



q0 

R 

t 

UO 

moment of inertia of cross  section 

i, jth  grid point 

element  stiffness  matrix 

length of one-dimensional  structure 

bending moments  in x- and  y-directions,  respectively  (see  fig. 7) 

harmonic  wave  numbers  for  sinusoidally  distributed  loads 

mass  per  unit  length  for  one-dimensional  element;  mass  per  unit area 
for  two-dimensional  element 

number of elements  per  harmonic wave  number, - a L o r  - 
hm  hm 

omitted  discretization  error  term of order h 

tangential  loading  on  bar  and  arch  structures 

amplitude of sinusoidal  tangential  or  inplane  loading 

distributed  inplane  loading  in x- and  y-directions,  respectively 

transverse loading 

magnitude of uniform  pressure 

amplitude of sinusoidally  distributed  transverse  loading 

radius of arch 

thickness of plate 

displacements  in x-, y-, and z-directions,  respectively 

amplitude of sinusoidally  varying  displacement 
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Subscripts: 

rectangular  coordinates 

constant  indicating  ratio of element  dimensions 

vector of nodal  displacements 

discretization  error  in  displacement or frequency  parameter 

discretization  errors  in  displacement aind frequency  parameters,  respec- 
tively, for plate  bending  examples . 

discretization  errors  in  displacements  u,  v,  and w, respectively 

nodal  rotation  variables for bending  element  about  y-  and  x-axes,  respectively 

Poisson’s  ratio 

radius of gyration of cross  section 

normal  stresses  in  x- and  y-directions  and  shear  stress,  respectively 

circular  frequency 

ex  exact 

i identification for ith  grid  point 

Abbreviation: 

ACM Adini,  Clough,  and  Melosh plate  bending  model 

Pr ime or Roman  numeral with a symbol  denotes  differentiation  with  respect  to x. 

Subscript  following a comma  denotes  differentiation with respect  to the indicated 
variable. 
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ERROR ANALYSIS PROCEDURE 

Two  main  sources of error   resul t   f rom the use of finite  element  methods  to  solve 
structural  problems.  These  may be conveniently  separated  into round-off e r r o r  and 
discretization  error. Round-off e r r o r  is that error  associated with the accuracy with 
which numbers are manipulated  in a computer  and is not considered  in  the  present  paper. 
Discretization  error is that error  associated with using  discrete  variables  to  represent 
a problem where the state variables are continuous.  This error  occurs  irrespective of 
the  accuracy of numerical  calculations  and  occurs  in  structural  problems when finite 
elements are used  to  approximate a continuous  structure.  Discretization  errors  may be 
of two  kinds, as follows: (1) Errors which are a function of the size of the  element  and 
which vanish as the  element  size  vanishes;  and (2) e r r o r s  which  do  not vanish when the 
element  size  vanishes. The relative  merit of elements  and/or  patterns which lead to  the 
f i rs t  kind of discretization  errors  depends on the  relative rate at which the  error  vanishes 
with element  size.  Elements  and/or  patterns which lead to  the second kind of discretiza- 
tion  errors  are  unsatisfactory  approximations  and  should be recognized  and  avoided. 
The present  paper deals with an  assessment of both kinds of discretization  errors  in 
finite  element  approximations. 

The method  used  in  the  study is t o  obtain the typical finite  element  equations which 
express  force  equilibrium at a reference node  point in   terms of displacement  variables. 
These  finite  element  equations (which are a class of difference  equations) are then 
expanded  in Taylor series about the  nodal  point to  obtain the differential  equations  equiv- 
alent  to  the  finite  element  equations  at  that node. The  resulting  differential  equations 
are  compared with the governing  equations  for  the  continuum  approximated. A simple 
bar element  approximation is treated in detail as an  example  to  characterize the method 
and  to  define  the  terms  to be used  in the study. 

Example  Discretization  Error  Analysis 

The  force-displacement  relations of a typical  one-dimensional  structural  element 
having  ends i - 1 and i are 

where {FG and (63 are the vectors of the nodal forces  and  displacements at the i th  

node and [K] is the element  stiffness  matrix.  Consider a bar of constant  cross- 
sectional area A subjected  to a distributed axial load  p(x) and approximated by 
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finite  elements  where  x  denotes  distance  along  the  bar  (fig. 1). For a bar  finite  ele- 
ment {Fa is the nodal  extensional  force, (6i} is the  corresponding  displacement U i ,  

and 

where  h is the  length of the  element  and E is Young's  modulus. 

In finite  element  methods  distributed  loads are replaced by concentrated  loads  at 
the node points.  There  are  several  possible ways  in  which distributed  loads  may be 
converted  to  concentrated  loads.  In  this  paper a very  simple lumping procedure  for 
loads is used  for all finite  element  models.  This  procedure  for  the  bar  gives  the  con- 
centrated load as the  value of the  distributed load at a grid point  multiplied by one-half 
of the  total  length of the two  adjoining  elements.  Treating  the  distributed  load in this 
manner  and  utilizing  equations (1) and (2) leads  to  the following equation  for  equilibrium 
at an  ith point  located  between  two  segments of length  h  and a h  (fig. 1) 

Equation (3) is a typical  finite  element  equilibrium  equation  for  the  indicated 
approximation. 

The  behavior of the  system of equation (3) is investigated as the  number of equa- 
tions  approaches  infinity  and  the  size of the  element  vanishes.  This is done by assuming 
the  displacements u i  to be analytical  functions  and by examining  equation (3) in  the 
limit as h  approaches  zero with the  aid of Taylor  series expansion of displacements  at 
points i - 1 and i + 1 about the  ith  point.  This  procedure  results  in 

P 
EA + . .  . + - = o  

where  the  primes  denote  differentiation with respect  to x and  where  the  subscript i 
has been  omitted  from  ui.  (Omission of such  subscripts is done consistently  throughout 
this  paper.)  Equation (4) is the  differential  equation  equivalent  to  the  finite  element 
equation at the  ith  node.  This is a differential  equation of infinite  order and a detailed 
discussion of the  solution of such  equations is given  in  reference 6. The  treatment of 
this equation  herein is somewhat  heuristic but satisfactory  for  the  present  results.  The 
te rms  in  equation (4) which a r e  not multiplied by powers of h  comprise  exactly  the 
governing  differential  equation  for  the  continuous  bar  and  the  remaining t e rms  are the 
discretization  error  in  the  differential  equation  that  result  from  use of the  finite  element 
approximations.  Thus  equation (3) reduces  to  the  correct continuum  equation as h 
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approaches  zero.  The  principal error in  the  differential  equation  resulting  from  the 
finite  element  approximation is the set of terms  in  the  discretization  error  containing 
the  lowest  power of h. The  power of h  in  the  principal  error  denotes  the  order of 
the  discretization  error of the  finite  element  equation  and  the rate of convergence as 
h vanishes.  Thus  the  finite  element  equation  leading  to  equation (4) has a discretiza- 
tion e r r o r  of order  h. Note  that if the  segments  are  equal (a = 1), the  discretization 
e r r o r  is of order h2. Similarly, if the  finite  element  equations  do not converge  to  the 
governing  differential  equations,  the  discretization  error would be of order ho o r  1. 

Harmonic  Loading  and  Vibration  Example 

The  error  analysis  procedure  described  in  the  previous  section  gives only the  rate 
of convergence of the  finite  element  approximation.  The  magnitude of the  discretization 
error   in   the bar finite  element  approximation is now evaluated  for  the  special  case of a 
bar  supported at each  end,  subjected  to a sinusoidally  distributed  static  loading 

p = p  sin - m m  
0 L 

and  approximated by equal  length  elements.  In  equation (5) po is the  amplitude of the 
loading,  m is the  number of half waves,  and L is the  length of the  bar. For this  case 
equation (4) becomes - - .  

+ h 2 U i v +  . . . +-sin-= PO mnx o 
12 EA L 

A  solution  to  this  equation  provides  explicitly  the  error  in  the  finite  element  approxima- 
tion as a function of element  size  and  harmonic wave length. If the  loading is regarded 
as a continuous  function, as was done in  references 4 and 5, the  exact  solution  to  equa- 
tion (6) is 

u = uo  sin - m m  
L (7) 

where  uo is the  amplitude of the  displacement.  Substitution of equation (7) into  equa- 
tion (6) results  in 

Uex 
l - E  

u = -  uex(1 + E)  (8 )  

where  the  exact  solution to the  bar  for  the  sine  loading is 

the  principal  error  in  deflection  due  to  the  finite  element  approximation is 

7T 2 

12N2 
E =- 
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and  the  number of elements  per  harmonic half  wave used  to  approximate  the  bar is 

N = _ L / m  
h 

Error  results  for  various  values of N are as follows: 

Thus  approximately  three  elements  per  deflection half wave are needed  to  keep  the  error 
in  finite  element  deflection  calculations at a node t o  within  10  percent  and  nine  elements 
per  half wave to   l imit   the   error   to  1 percent. 

A similar  approach is used  to  determine  the  error  in  natural  frequency of the  bar 
example when approximated by equal  length  elements.  For  vibration  behavior  where a 
simple  lumping  process  analogous  to  that  used  for  the  distributed  loading is used  to 
obtain a diagonal  mass  matrix,  the  counterpart 

u" + - h2 ,iv + 

12 
. .  

where ?ii is the  mass  per unit  length  and w 
mode  shape is the  same as equation (7) and  the 

where 

of equation (6) is 
- 2  mw 

* EA u = o  

is the  circular  frequency.  The  vibration 
eigenvalues of equation (12) a r e  

,2 = w2 (1 - E) ex 

LIZx = ( g  EA 
m 

and E is the  discretization error due to  the  finite  element  approximation  given by equa- 
tion (10). Note  that  the error  in  the  square of frequency is the  same as that  resulting 
from  static  deflection  calculations  except of opposite  sign.  Thus  the  frequency  calcula- 
tions  converge  from below  and the  deflection  calculations  converge  from  above. 

For completeness,  table I summarizes  the  principal  error  terms for the  general 
bar  finite  element  approximations  and  table I1 summarizes  the  evaluation of these   e r rors  
for  the  harmonic  response  examples. 
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RESULTS AND DISCUSSION 

The  method  described  in  the  previous  section  was  used  to  investigate  the  conver- 
gence of beam  elements,  straight  and  curved  element  approximations  to an arch, rec- 
tangular  and  triangular  plane stress elements,  and  plate  bending  elements.  The  results 
of the  investigation are summarized  in  this  section  together  with a general  discussion. 
A summary of results of the  error  studies is given  in  tables I and 11. 

One-Dimensional  Bending  Element 

For  beam  bending  problems  the well-known  finite  element  model is based on the 
nodal  variables 

where wi is the  displacement  and O i  the  rotation at the  ith node. (See fig. 2.) The 
governing  differential  equation  for a beam is 

,iv = 2 
E1 

where  q is the  lateral  load, I is the  moment of inertia of the  beam  cross  section,  and 
the  constraint  relationship  between  rotation  and  displacement is 

e - w ’ = o  (17) 

A satisfactory  finite  element  approximation  should  converge to equations (16) and  (17). 
As shown in  appendix A (see  also table I(a)),  the  beam  element  does  converge  with a 
principal  error  term of order h4. 

The  principal  error was evaluated  for a finite  element  approximation  to a simply 
supported  beam of length  L  subjected  to  sinusoidally  distributed lateral load  q  where 

q = q, sin - m m  
L 

and  where qo is a constant.  The  principal  error  in  the lateral deflection  w of the 
beam  resulting  from  the  finite  element  approximation is (see table 11) 

Equation 
from  the 

(19) also  gives  the  magnitude of the error in  frequency  determination  resulting 
finite  element  approximation. (See table 11.) 
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Approximation of Curved  Structures 

Straight  elements  are  often  used  to  approximate  curved  structures  such as curved 
beams,  arches,  and  shells.  To  gain  some  insight  into  the  influence of curvature, an arch 
of radius R was  approximated by conventional  straight  beam  elements  which  also  had 
extensional  capability.  The  arch  loading is a normal  pressure  q  and a tangential dis- 
tributed  loading  p.  (See  fig. 3.)  At a typical  ith node three  variables are required  to 
define  element  behavior. For this  problem it is convenient to  take  these  variables as 

where  u  and  w are  the  tangential  and  radial  displacements,  respectively,  and 0 is 
the  rotation.  Three  finite  element  equations  result  from  force  and  moment  equilibrium. 
As  the  element  size  vanishes,  the  moment  equilibrium  equation at the  ith node converges 
to  the  correct  constraint  equation  between  the  rotation 0,  radial  displacement w,  and 
tangential  displacement  u 

e - ( w 7 + ; ) = 0  

and  the  tangential  and  normal  equilibrium  equations  converge,  respectively,  to 

EA ( -u" + - ;) - E!(w~~~ +$) - p = 0 

where  the  principal  error  terms  for  equations (21) to (23) are  proportional  to h2.  In 
equations (22) and (23) the  rotation 0 has  been  eliminated by using  equation (21) in a 
manner  similar  to  that done  previously  for  the  other  bending  problems.  Equations (22) 
and (23) result when the  cylindrical  shell  equations  given  in  reference 7 are  specialized 
to  the  case of an  arch.  Thus,  the  straight  elements  provide a convergent  approximation 
to a first approximation  arch  theory  with  an  error of order  h 2 . 

A study was also  made of the  use of curved  elements  to  approximate a curved  struc- 
ture.  The  stiffness  matrix  for a curved  element was derived  based on the  strain  energy 
for a ring  given  in  reference 8 and  the  details are given  in  appendix B. The  displace- 
ments  were  approximated by assuming  that  arch  tangential  and  normal  displacements 
were  linear  and  cubic,  respectively, over the  curved  element  length.  The  resulting  finite 
element  equations were investigated  and  the  element  pattern was found to  converge  to 
equation (21) plus  the  following  equations with e r r o r s  of order h2 (see table I(a)) 

10 



E1 ( w i v + 2 $ + $ ) + E A ( - s + g ) - q = 0  

The  arch  equations (24) and (25) are  consistent with the  ring  strain  energy  given  in 
reference 8 and are also the  ring  equations  which  result  from  the  specialization of the 
cylindrical  shell  theory  given  in  reference 9. Thus  the  curved  elements  also  provide a 
convergent  approximation  to  the  curved  structure with an   e r ror  of order h2. The two 
sets of arch  equations (22),  (23)  and  (24),  (25) are  related in  that  the  curvature  terms 
differ by terms  composed of the  extensional strain divided by the  arch  radius.  According 
to  the  Koiter  criterion  for  thin  shells  (ref. 10) such  modifications  are  admissible  alterna- 
tives for a first approximation  theory of shells, and it seems  appropriate  to  use  this 
criterion  for  arches. 

An assessment of the  magnitude of the discretization  error  terms  for  the  straight 
and curved  element  approximations  can be obtained by considering a closed  circular  ring 
subjected  to a harmonic  lateral loading  and  approximated by either  straight or  curved 
elements. For this  problem 

p = o  (26) 

q = q  sin - mx 
0 R 

If the  exact  solutions  to  equations (22), (23) and (24), (25) a r e  denoted as iiex,Fex and 
uex,wex, respectively,  these two  solutions are  related by 

where p is the  radius of gyration of the  arch. 

Because  the  determination of the  magnitude of the  principal  error  terms of order 
h2 is quite  tedious,  selected  numerical  calculations  were first carried out for the  ring 
problem  to  investigate  the  magnitude of the  error  term.  Results  were  obtained  for  sev- 
eral  values of m and ring  geometries.  The  numerical  results  indicated, as expected, 
that the  convergence rate is proportional to 1/N2. Typical  results  for  an  arch with 
a rea  of 1 inch2 (6.45 cmz),  moment of inertia of 10  inch4 (416 cm4),  radius of 
100 inches (2.54 m),  and  m = 2,  approximated by  24 straight  elements  per  half  wave, 
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were E< = -0.001955 and e= = -0.000892 (see  table 11) where  u = uex(1 + e<) 
and w = wex(l + ET). - 

Results  for  the  same  problem  based on a curved  element  approximation  (using  the 
same  number of elements)  were eU = eW = -0.136862. Because  the  size of eU and eW 
are quite  large  for  the  number of elements  used  for  this  example,  the  principal  error 
t e rms  of order h2  were  determined  for  the  curved  element  approximation.  These 
e r ro r   t e rms   fo r  u = Uex(1 + eU) and w = wex(1 + eW) (see  table rr) a re  

7T 2 
E U  = EW = - 

2  2 
12N2($) (m2 - 1) 

Equation (30) shows  that  the  principal  error  due  to  the  curved  element  approximation is 
inversely  proportional  to  the  ratio (P /R)~ ,  which for  a real arch is small  but finite. 
Although this  particular  curved  element  approximation  converges to the  correct  result ,  
it has significant  error  for  calculations  based on a moderate  number of elements  and is 
an  undesirable  one.  Thus a curved  element  may  be  developed  which  converges  to  the 
right  equation, but t he   e r ro r  may still be  substantially  greater  than  for  the  straight  ele- 
ment.  The  reason  for  the  undesirable  character of the  error  term  in  equation (30) and 
the  accuracy of the  curved  element  used  herein  may be due  to  the  fact  that  the  usual  dis- 
placements  u  and  w  do not admit  unstressed  rigid body motion of the  arch  element. 
Reference 11 has  shown  with  numerical  examples  that  omission of the  rigid body modes 
in  the  element  behavior  appears  to  affect  significantly  the  accuracy of curved  structure 
approximations. 

Two-Dimensional  Plane  Stress  Elements 

The  linear  elastic  plane  stress  equations  for  equilibrium  in  the  x-  and  y-directions 
formulated  in  terms of displacements are, respectively 

u,* + 9 u,yy + * v,xy f px = 0 

*u 2 'XY + ~ v , * + v , * + ~ = o  B 

Here  u  and  v are the  displacements  in  the x- and  y-directions,  respectively, px and 
-I 

pY are the  distributed  forces,  respectively, 1.1 is Poisson's  ratio, B = - is the l!Jt 

1 - I.12 
extensional  stiffness,  and t is the  plate  thickness.  Subscripts  following a comma  denote 
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differentiation  with  respect  to  the  indicated  variable. A satisfactory  finite  element 
approximation  should lead to  equations which  converge  to  equations (31) and (32) at a 
node as the  element size vanishes. 

Rectangular  elements.-  The  error  analysis  procedure is extended  to a general 
rectangular  plane stress element  in  appendix C and  subsequently  specialized  for  two 
models  the  stiffness  properties of which a r e  documented  in  reference  12. For the  linear 
stress model  the stresses ax and ay in  the x- and  y-directions,  respectively, are 
assumed  to  vary  linearly  while  the  shear stress T~~ is constant  (fig.  4). For the  linear 
edge displacement  model,  the  displacements  along  an  edge of the  element are assumed  to 
vary  linearly (fig. 4). The  nodal  variables  used  to  define  the  stiffness  matrices  for  these 
finite  elements are 

and a typical  finite  element  equation  contains  contributions  from all elements  contiguous 
to  the node.  The  pattern  arrangement  composed of equal  elements is also shown  in  fig- 
ure  4. The  distributed  forces on the  plane  stress body were  again  concentrated  in a 
simple  fashion  based on the  value of the  distributed  force  at  each node location.  The 
typical  finite  element  equations  were  obtained  and  the  error  terms  evaluated. An inves- 
tigation of the  convergence of the  finite  element  equilibrium  equation  for both  models 
showed  them  to  converge  to  the  plane  stress  equations (31) and (32) with a principal  error 
of order h2.  (See table I(b).) 

The  principal  error was evaluated  for  the  case  where  the  two  types of rectangular 
elements  were  used  to  approximate a square  plate  in  plane  stress  subjected  to a harmonic 
inplane  loading,  in  the  y-direction.  The  loading is 

P, = 0 (34) 

p = p s in   %sin  nnY - 
Y O  a  a (35) 

and  the  plate is supported on the  boundary  such  that  the  force  resultant  in  the  x-direction 
and  the  displacement  v  both  vanish.  For 1.1 = 0.3 and  m = n, the   e r rors  eU and eV,  
in  the  displacements  u  and  v,  respectively  (see  table 11), are as follows: 

Linear stress model 
1.85 

E U  = - 
N2 

2.40 
EV = - 

N2 
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Linear  edge  displacement  model 

1.15 EU = - 
N2 

1.97 EV = - 
N2 

(39) 

where N is the  number of elements  per half wave  length. 

Triangular  elements.-  Results  were  also  obtained for the  use of the classical 
triangular  plate  element (ref. 13) to  approximate  plane stress problems.  Arrangements 
or patterns A, B, and C were  investigated  for  the  convergence of three  right  triangular 
elements (see fig. 5 for  patterns about  point  i,j). It was found that  pattern A converges  to 
the  required  plane  stress  equations (see eqs. (31) and (32)) and  the  principal  error is of 
order h2. However the  corresponding  equations  for  pattern B are 

and for  pattern C are 

P - I-1 v,* + v,yy + 2 L  = 0 
2 B 

px 
u,xx + 2 - IJ- u,yy + (1  + p)v,,y + = 0 

1 - P  P 
(1 + P)U,xy + v,= + v,yy + 2 = 0 (43) 

The  additional e r ro r   t e rms   fo r  all patterns  proportional  to h2 a r e  given  in  table I(b). 

Some  points  can  be  noted by comparing  the  convergence  characteristics when 
h -c 0 of the  pattern B and C equations with equations (31) and (32). Firs t  of all both 
patterns B and C lead  to a discretization  error of order  1. The  fact  that  the  pattern B 
equations do not contain  cross-derivative  terms  suggests  that  convergence of shear  
behavior  at  the  nodal  point is poor.  This  poor  convergence is not unexpected  since  there 
is no  mechanism  in  the  finite  element  equations  for  representing  changes  in  shear  at  the 
nodal  point because of the  arrangement of the  elements.  However  the  pattern C equa- 
tions  overprescribe  the  cross-derivative  term by a factor of 2. Note  that  the  difficulty 
arises from  the  element  arrangement  rather  than  the  element  properties  since  the ele- 
ment  used  here  fully  represents all states of plane  stress.  These  results  indicate  that 
convergence  difficulties  may arise for some  triangular  elements as a result of poor ele- 
ment  arrangement  even though the  element is well  formulated. 
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Since  the  difficulty with pattern B is due to  its inability to  represent  the  cross 
derivative at the node, better  convergence  properties would be expected if additional 
degrees of freedom  were  used  to  characterize  the  right  triangular  element  behavior. 
Such  added  degrees of freedom  might be the  deflections at the  midpoint of the  various 
edges or the  derivatives of displacements at nodes. 

Fortunately, if patterns B and C are used  in  structural  idealizations,  they  usually 
occur  in  pairs  (see  fig. 5) and  the  underprediction of the  shear  stiffness at one  point is 
compensated  to  some  extent by an  overprediction of shear  stiffness at a neighboring  point. 
Nevertheless  these  results  suggest  that  caution  should be exercised  to  ensure  that an  
excessive  number of either  patterns B or C does not occur in a structure when the  results 
are strongly  dependent on shear  stiffness.  A  more  consistent  approach is to  use  pat- 
t e rn  A since it converges  to  the  appropriate  plane  stress equation. 

For completeness  the  convergence of a pattern  composed of equilateral  triangles 
in  plane  stress was also  investigated.  The  typical  pattern is shown in figure 6 and the 
resulting  finite  element  equations  were found to  converge  to  the  plane  stress  equations 
with a principal  error of order h2.  (See table  I(b).) 

Two-Dimensional  Plate  Bending  Elements 

The  error  analysis  procedure was developed  for a general  rectangular  plate bending 
element in  appendix  D  and  subsequently  specialized  for  three  models.  The  models inves- 
tigated  were  those  developed by Papenfuss  (ref. 14), Melosh  (ref. 15), and  one developed 
independently by Adini and  Clough  (see ref. 1 or ref. 16) and  Melosh  (ref. 17). (These 
will be denoted  respectively as the  Papenfuss,  Melosh,  and ACM models;  the  stiffness 
matrices of all three  models  are  tabulated  conveniently in ref. 1.) The  pattern  arrange- 
ment is shown in figure 7. The  nodal  variables  for  these  finite  element  models  are 

where w is the  lateral  displacement  and 8 and cp are  the  rotations about the y-  and 
x-axes,  respectively. On the  basis of the  beam  results a consistent set of three  plate 
bending finite  element  equations  should be expected  to  converge  to 

v4, = s_ 
D (4 5) 

e = w , ~  

c p = w  'Y (47) 
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as the  element  size  vanishes.  Here  equation (45) is the  familiar plate equation and equa- 
tions (46) and (47) are constraint  equations  between  the  rotations 8 and cp and  the 
derivative of w. All three  models  lead  to  equations  which  converge  to  constraint  equa- 
tions of the  form of equations (46) and (47) and  the  Melosh  and ACM models also converge 
to  the  plate  equation (45). The  Papenfuss  model  however  converges  to  the  equation 

where CY is the  aspect  ratio of the  element  and  thus  has a principal  error of order 1. 
The  principal  errors  for all other  equations  for  the  three  models are proportional  to  h2 
with  the  exception of the  constraint  equations for the ACM model  which are proportional 
to  h4. (See table I(c).) 

It is well known from  numerical  calculations (ref. 1) that  the  Papenfuss  model  has 
some  deficiencies  and  that  the  source of the  discrepancies is the  inability of the  model 
to  describe  the  twist  behavior of a plate.  This  discrepancy  term  shows  up as an  incor- 
rect  cross-derivative  term  in  equation (48) when  h vanishes. 

Square  elements of the  three  models  were  used  to  approximate a simply  supported 
square  plate  subjected  to a harmonic  loading 

q = go sin - sin - m m  nnx 
a a (49) 

The  same  procedure  was  used  to  approximate  the  lateral  vibration  characteristics of the 
plate.  The  error  in  deflection e l  and  the  error  in  frequency e 2  resulting  from  the 
finite  element  approximation  for m = n  and p = 0.3 (see  table 11) a r e  as follows: 

Model € 2  E l  , I 

Papenfuss -0.0463 - - 0.2646 -0.0486 - - 0.2909 
N2  N2 

Melosh 0.708 
I F  

0.708 

where N = e is the  number of elements  per  Fourier half wave. Figure 8 shows a 

sketch of the  plate  and a plot of the  ratio of the  finite  element  results  to  the  exact  result 
for  the  three  elements as 1/N2 vanishes.  The  results  show  that  in  the  limit as the size 

h 
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of the  element  vanishes,  the  results for this problem  based on the  Papenfuss  model  have 
an   e r ror  of approximately 5 percent.  Note  also  that  the  Papenfuss  model  converges  from 
below  and  the  other  two  models  converge  from  above. 

Since  the  Papenfuss  model  equations  do not converge  to  the  plate  equation, a solu- 
tion  was  obtained  for  the  resulting  Papenfuss  psuedoplate  equation (48) for a rectangular 
planform  subjected  to a uniform  pressure i, having  simple  support  boundary  conditions 
and  approximated  by  elements  having  the  same  aspect ratio as the  plate.  The  solution 
was  obtained  by  means of classical  Fourier series expansions of the  load ij and  deflec- 
tion  shape as 

qmn  sin a sin m m  nn 

m=l  n=l 

M M  

where a and  b are  the  lengths of the  plate  in  the x- and  y-directions,  respectively, 
and  m  and n are  restricted  to  the odd integers. 

The  quantities  wmn  are  related  to  the  pressure 4 by 

The  following  table  compares  the  center  deflection wc of the  Papenfuss  psuedoplate 

with  the  exact  plate  results for !%!x 103: 
sa4 

Papenfuss I a/b I psuedoplate I Exact  plate I 
1 3 .a7 4.06 

1/2 1 9.64 10.13 

These  results  indicate  that  the Papenfuss psuedoplate  has an e r r o r  of approximately 
5 percent  for both cases. Numerical  results  obtained  in  reference 1 for  these  cases 
appear to  be  converging  toward  these  analytical  results. 
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Remarks on Finite  Element  and  Finite  Difference  Approximations 

Some  general  results  can  be  deduced by comparing  the  convergence  and  principal 
e r ror   resu l t s  of the  various  element  approximations.  One  result deals with the  require- 
ment of interelement  compatibility.  Consideration of the  .elements  for both plane stress 
and bending gave  examples  where  this  requirement  was  neither  necessary  nor  sufficient 
to  insure  convergence.  The  rectangular  linear stress model is not interelement  com- 
patible  in  displacements  and  the  rectangular  Melosh  and ACM bending  models are not 
compatible  in  slope;  yet  these  three  converge  to  the  correct  equations. On the  other hand 
the  right  triangular  plane stress patterns B and  C are interelement  compatible  in  dis- 
placements  and  the  Papenfuss  plate  bending  element is compatible  in  slope  and  displace- 
ments and  yet these  elements  and  arrangements  do not converge  to  the  correct  equations. 

Some  influence of unequal  length  segments is seen  from  the  change  in  principal 
errors  for  the  bar  approximations.   For  bar  elements of equal  length  the  principal  error 
is proportional  to  h2,  and  for  bars of unequal  length,  proportional  to h. From  the 
asymmetric  character of the  Taylor series expansion  about  the  reference  point  similar 
reduction of the  order of e r r o r  would be  expected for  other  elements.  This  slower  rate 
of convergence  suggests  that  results  may be less accurate when structures are approxi- 
mated by unequal  elements  than when approximated by equal  length  segments. 

Comparison of the  errors  for  the  plane stress elements with those of the  bar ele- 
ments  for  the  case of harmonic  loading  indicates  that  approximately  nine  bar  elements 
and 15  square  plane stress elements  per half wave in one direction are required  for a 
1-percent  error.  Approximately  two  beam  elements  and nine square  Melosh  plate 
bending elements are required  for a 1-percent  error.  Thus  more  elements are required 
per  wavelength  in one direction  for  two-dimensional  behavior  than  for  one-dimensional 
behavior t o  obtain  the  same  degree of accuracy.  This  fact is important  because  practical 
complex  structures  such as stiffened  plates or  shells are two  dimensional  and  usually are 
approximated by various  combinations of one-  and  two-dimensional  elements.  Since  the 
elements have  varying  degrees of accuracy,  results  obtained  for a structure  approximated 
by a combination of the  elements  may be biased in some  sense  rather than  having  uniform 
inaccuracies. 

! 

Results are given  in  appendix E which compares  finite  element  approximations  and 
central  finite  difference  approximations  to  differential  equations  for  the  same  problem. 
The  results  show  that  for  bar,  beam, and  plane stress equations  some  correlation  can be 
made  between  finite  difference  equations  and  equations  resulting  from  finite  element 
approximations.  The  results for the  harmonic  load  problem for plane s t r e s s  show  that 
neither  method is always  more  accurate  and  that  the  value of Poisson's  ratio  can  change 
the  relative  accuracies of finite  difference  and  finite  element  results.  The  results  also 
show  that  the  finite  element  approximations  to  beam  problems are usually  more  accurate 
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than  central  finite  difference  approximations  because of the  higher rate of convergence of 
the  finite  element  approximation. 

CONCLUDING REMARKS 

Basic  data  are  presented on the  convergence  and  accuracy of finite  element  equa- 
tions  resulting  from  patterns  and  elements  in  common.use.  The  elements  studied  include 
bar  elements,  beam  elements,  plane stress elements of rectangular  and  triangular  shape, 
plate bending elements of rectangular  shape  and  straight  and  curved  arch  elements.  The 
results  indicate  that  many of the  elements and patterns  have good convergence  proper- 
ties;  that is, the  resulting  finite  element  equations at a node  converge to  the continuum 
equations at the node as the  element  size  vanishes.  The  results  also  indicate  that  some 
elements  and/or  patterns  have  poor  convergence  properties. Right triangular  plane 
stress  patterns,  for  example,  can  have  undesirable  convergence  properties. It is shown 
that  the  requirement for interelement  compatibility is neither  necessary  nor  sufficient  to 
guarantee  convergence of the  finite  element  equations.  Results for arch  approximations 
show  that both straight  elements  and  curved  elements  converge  to  the  behavior of an  arch 
structure;  however for the  problem  considered,  the  straight  element  approximation  gives 
substantially  better  results  than  the  curved  element  derived  herein. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Hampton, Va., December 16, 1969. 
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APPENDIX  A 

ONE-DIMENSIONAL BENDING ELEMENT 

When bending  behavior is introduced,  finite  element  models  and  the  discretization 
error  analysis  procedure  become  more  complex  than  for  extensional  elements.  To  indi- 
cate the  additional  features  brought on by bending,  consider a simple  prismatic  beam  sub- 
jected  to  distributed  load  q  and  approximated by an  assemblage of beam  bending  finite 
elements of equal  length  h (fig. 2). The  finite  element  nodal  variables  for  this  prob- 
lem are 

r .  

where wi and  8i are the  displacement  and  rotation,  respectively, at a node,  and  two 
finite  element  equilibrium  equations  are  obtained at each node. These two  equations are 
expanded  in a Taylor  series about  the  ith  point (when w  and 8 are considered as 
independent  variables)  to  give 

h6 . . 2 
+ - P + .  . . -- - qh 

420 E1 

where I is the  moment of inertia of the  beam  cross  section.  Since  beam  behavior  for a 
continuum is defined by only  one  independent  variable w, it is useful  to  eliminate 8 
insofar as possible  from  the  finite  element  equation.  This  elimination is done by differ- 
entiating  equation (A3) to  obtain  expressions  for  derivatives of 8 and  sequentially  back 
substituting  these  derivatives  into both  equations (A2) and (A3). 

Equations (A2) and (A3) finally  can  be  put  in  the  form 

e - w + - w v + .  . . = o  h4 
180 (A 5) 

Equations (A4) and (A5) show that in the  limit as h  vanishes  the  beam  finite  element 
equations  converge  to  the  familiar  beam  equation  and  the  correct  constraint  equation 
between  the  two  finite  element  variables 8 and w. 
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APPENDIX B 

DERIVATION OF STIFFNESS MATRUE OF A CURVED BEAM 

In  this  section  the  stiffness  matrix of a curved  prismatic  beam  bending  and  exten- 
sional  element is derived.  The  method  used is the  Rayleigh-Ritz  method  wherein  the 
strain  energy  for  the  element is expressed  in  the  matrix  form 

U = i{6)T [K] {6) 

where c6> is the set of generalized  displacements  that  characterize  the  element  and 
[q is the  stiffness  matrix.  The  energy  for a curved  beam of radius  R  and  length h 
based on the  theory of reference 8 is 

h 
U = (b)T[C]{q dA ds  

O A  

where 

['I = R(R - <) 1 - R  1 
E 

and 

e = w l + -  U 

R 

In  the  preceding  equations  u  and w are, respectively,  the  tangential  and  radial dis- 
placement of the  element,  and s and c are, respectively,  the  coordinates  along  the 
length  and  through  the  depth of the  element. 

The  displacements are assumed  to  vary  over  the  element  length as 

w = a. + als + a2s 2 + a3s 3 

u = bo + bls 
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APPENDIX B - Continued 

where ak and bk are constants.  The  nodal  variables  may  then be related to  the 
constants as 

(B8) 
where 

0 1 0  

0 0  0 0 0  

0 = 

h2 h3 

(.> = 11 b0 

and  the  subscript 1 in  the (6) vector  indicates  the  end of the  element  where s = 0, 
and  the  subscript 2 in  the  vector  indicates  the  end of the  element  where s = h. Dif- 
ferentiation  and  substitution of equations (B6) and (B7) into  equation (B3) yields 
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APPENDIX B - Continued 

where 

0 0   0 0  

s s2 S3 0 , 

0 2 6 ~ 0 -  1 
R 

Equation (B2) through  the  use of equations (B12) and (B8) may be rewritten as 

U = Lsh 1 {6)'[H-qT[B]'[C][B]  [H-g{6)dA ds 
2 O  A 

Since [H] and [B] are independent of the  integration  over  the  cross  section, the 
energy  may  be  expressed as 

where 

[TI = 1 [C]dA = EA 
A 

R(l + Z) -(1 3- Z) - R 2 q  

-(1 + Z) $1 + Z) 
RZ I 

- -R2 Z RZ R ~ Z J  

The following integrals  were  used  to  obtain  equations (B16) 

2 J'e= ZAR J 
where Z is the  Winkler-Bach  constant for curved  beams.  Thus a comparison of equa- 
tions  (Bl) and (B15) reveals  that 

[K] = lhlfI-gTIB]TIT] 0 [B][H-1] ds  
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APPENDIX B - Continued 

The  elements of the  stiffness  matrix are 

FI = 

k33  k34  k35 

Symmetric k44 k45 

k55 

L 
where 

k 3 4 = E A p [ L + 3 + Z ( - l + L - 9 ]  12  140 15 140 2 p2 

- 

kl 6 

k26 

k36 

k46 

k56 

k66 - 

(Equation  continued on next page) 
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APPENDIX B - Concluded 

where 
p = -  h 

R 

In the  error  analysis  study  in  the body of the  paper, it is assumed  that [ << R. Then 
Z may  be  approximated by 

c z = -  1 
A R ~  
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APPENDIX  C 

RECTANGULAR  PLANE  STRESS ELEMENTS 

This  appendix  presents  the  development of accuracy  relationships  for  plane stress 
problems  approximated by finite  elements.  Consider  an  isotropic  constant  thickness 
body in  plane  stress  subjected  to  distributed  inplane  loadings px  and  py  and  approxi- 
mated by rectangular  finite  elements (fig. 4). It is presumed  that  the only generalized 
coordinates  used  to  describe  the  element  behavior are the  displacements  u  and  v at 
the  nodes.  The  rectangular  plane  stress  finite  elements  are  connected at the  corners; 
however  the  displacements of two  adjacent  elements  need not match  along a common 
boundary;  that is, the  elements  need not be  interelement  compatible. 

The  behavior of a body in  plane  stress is governed by two  equations of equilibrium. 
In typical  finite  element  approximations,  two  equilibrium  equations  also  occur at each 
node if the  stiffness  matrix of a typical  rectangular  finite  element  has  the  general  form 

r -  

FX1 

FY 1 

F 
x2 

FY2 

Fx3 

FY3 

Fx4 

Fy4 - c  

kll k12  k13 

k22  k23 

k33 

Symmetric 

where ui and  vi are  the  displacements of the  ith  node  in  the x- and  y-directions, 
respectively,  and Fxi and Fyi a r e  the  corresponding  element  nodal  forces  (fig. 4),  
and  the  quantities  kij  are  the  stiffness  matrix  coefficients which  depend on the  behavior 
assumed within the  element.  The  nodal  concentrated  load is taken to be the  pressure 
evaluated at that  grid  point  multiplied by 1/4 of the  total  area of the  four  elements sur- 
rounding  the  grid  point.  Use of equation  (Cl)  for  each of four  adjacent  identical  elements 
leads  to  the following  two  finite  element  equations at a node i , j  
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APPENDIX C - Concluded 

4kllui,j + 2k13(Ui+l,j +ui-l,j) + k15(Ui+1,j+l +ui- l , j+l  +ui-l,j-l +ui+l,j-l) 

2k17(Ui,j+l +ui,j-l) k16(Vi+l,j+1 - vi-l,j+l vi-l,j-l - vi+l,j-l) - )?xcyh = O (c2) 
2 

- p a h  = O  (C3) 2 
+ k26("i+l,j+l + vi-l,j+l + vi-l,j-l + vi+l,j-l) + 2k28(vi,j+l + vi,j-l) y 

The  variables u and v in  equations (C2) and (C3) are expanded in a two-dimensional 
Taylor series about the  point i , j  to  give 

where  the  subscripts following a comma  denote  differentiation  with  respect  to  the  indicated 
variable.  Equations (C4) and (C5),  which represent  equilibrium  in  x-  and  y-directions, 
respectively,  can  be  used  to  investigate  the  convergence  characteristics of any  plane 
stress rectangular  element with a stiffness  matrix of the  form of equation  (Cl). 
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APPENDIX D 

RECTANGULAR PLATE BENDING ELEMENTS 

The  development of finite  element  models  for  plate  bending  problems is less 
obvious  than for beams,  and several plate  bending  models,  each  derived  from  different 
assumptions, are in  current  use. Many of the  models  have  three  independent  variables 
at each  grid  point;  namely,  the  displacement w, the  rotation 0 about  the  y-axis,  and 
the  rotation  about  the x-axis. (See  fig. 7.) This  section  describes  the  error  analysis 
procedure  for a rectangular  isotropic  constant-thickness  plate  bending  element  the 
behavior of which is described by these  three  nodal  variables. For a rectangular  model 
of length  h  in  the  x-direction  and  width a h  in the  y-direction,  the  stiffness  matrix  can 
be put  in  the form 

-- - D  

a h  2 

k l  1 k12 kl 3 k14 kl 5 kl 6 kl 7 k18 k19 %,lo k l , l l  k1,12 

Symmetric 

C 

Q 
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APPENDIX D - Continued 

where  the  quantities  kij  are  the  stiffness  matrix  coefficients which  depend on the 
behavior  assumed  within  the  element  and  where  the  directions of rotations  and  moments 
are defined  in figure 7. Let a continuous  plate  subjected  to a lateral load  q  be  repre- 
sented by an  assemblage of rectangular  finite  elements  the  stiffness  properties of which 
are given in   the  form of equation  (Dl).  The  three  finite  equations at a node i , j  a r e  

+pllwi,j a h  " 2k14(Wi+l,j wi-l,j) " 2k17(Wi,j+l + wi,j-l) " kI,IO(Wi+l,j+l " wi-l,j+l 

- "2[ 4hk 22 8 i , j  " 2hk25(8i+l,j + ' i-l,j) 2hk28 ('i,j+l 'i,j-l)+ hk2,11(8i+l,j+l 'i-l,j+l 
a h  

where  D is the  bending  stiffness of the  plate. 

The  quantities w, 8, and cp in  equations (D3) and (D4) a r e  expanded  in  the  Taylor 
series about  the  point i , j  and  through a process of differentiation  and  back  substitution  the 
quantities 8 and q are expressed  in  terms of  w. The  result is 
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APPENDIX D - Continued 

+ +2,10 - k24 + K1 k2910(k28 + k2,11> - 2k2,12 K2 + O(h4)  (D5) 

r p = -  k37 + k3,10  h2 {[ k37 + k3,10 
K2 w'y 2K2 k3,10 - (k36 + k3,12) K~ 

-2k3,11 k24 + K1 k291j~,my + a2(k37 + k3,10) (' - k39 +,k3912)W,yy3 KZ + O(h4) (D6) 

where 

Equation (D2) is similarly expanded  in  Taylor series and  equations (D5) and (D6) are used 
to eliminate 8 and q. The  result is 

(k17 k l , l O )  - 4 ( k 19 + k1,12)k37 + K2 k391qw,yy + h4k(k14 + k1,lo) 

- (k15 + 'l,ll)(% Kg + 3 k24 + K1 k2910]w,m + ir2h4f1,10 - kk15 + kl,ll)X1 k10 

+ k1,lO) - (k19 + k1,12)f& 12 + 5 2  k37 ;;,lo) ]-,yyyy + h6Q(k14 + %,lo) 

(Equation  continued on next  page) 
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APPENDIX D - Continued 

(k15 + '1,11)(& K4  2 + 4- K 1 O  'l,ll(Z + jj 1 k24 + k2,10 Kg2 
K1 ) - (k19 + k1,12)4K22 

L 

- k1,12(K K12 

1 

+ -  
3 K2 

\l 

- qa h 2 4  + -  30 k37 +k3,10)1 K2 w,yyyyyy + . . . - - D 

where 

Kg = 2(k24 + - k25 + k2,11) 
K1 

K 1 O  = 'k2,lO - (k28 + k2,11)  k24 + k2,10 
K~ - 2k2,12 K2 

k37 + k3,10 
- (k36 + k3,12)  K2 - 2k3,11 

K1 

K12 = 2(k37 + k3,,,)(k - k39 K2 + '3912) 

(Equation  continued on next  page) 
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APPENDIX D - Concluded 

K42 = -4k2,11(k24 + k2,10) + 5 4 K  1 k 2,lO - 2(k25 + k2,11)K10 2(k28 + k2,11)K9 

2 - 2 K  - 3 1 k 2,lO - 2(k28  k2,11)p10 'i('24 + '2,101 

+ 8 -(k37  K2 + k3,10)k2 ,12~9 L?,l2 3 
- 9 K1 

= -2(k36 + '3,12)[Kll + $(k37 + '3,lOj + 5 2  3,lO 
2 2 K  k 

- g('24 K2 k2,10)k3,11(f - '25 + '2,ll 

K~ ) 

-4k3,12(k37 + '3,10)+ 3 4 K  2 k 3,lO 

K82 = 2(k37 + k3,10)[(k39 + '3,,,,(Z  '39 " K2  '3,12 - 1  ) + -  :d 
Equation (D8) in   terms of general  stiffness  coefficients  represents  the  vertical  equilibrium 
equation of a plate  approximated by finite  elements  in  terms of the  displacement w, and 
equations (D5) and (D6) are  the  constraints  between 8, q, and w. Equations (D5),  (D6), 
and (D8) can be used to investigate  the  convergence of the  finite  element  equations at a 
typical node point when the  stiffness  properties of the  element  are  given  in  the  form of 
equation  (Dl). 
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APPENDIX  E 

COMPARISON O F  FINITE  DIFFERENCE AND 

FINITE  ELEMENT APPROXIMATIONS 

It is interesting  to  compare  finite  element  approximations  with  the  widely  used 
central  difference  approximations  to  structural  differential  equations of equilibrium. 
While correlation is not obvious  for all classes of problems  some  observations  can be 
made. 

One-Dimensional  Extensional  Bar 

The  governing  equation  for a one-dimensional  bar  subjected  to a distributed  inplane 
load  p is 

u , = + L = O  
EA 

where  the  subscripts  following  the  comma  indicate  differentiation  with  respect  to  the 
indicated  variable.  Application of central  finite  difference  approximations  to  equa- 
tion (El) for  unequal  nodal  spacing  h and a h  gives 

2 l + a  
(1 + a ) h  

(ui-l - ( y u i  + 

Comparison of equation  (E2)  with  the  finite  element  equation  approximated by segments 
of unequal  length (eq. (3)) indicates  that  for  this  simple  problem  the  finite  difference  and 
finite  element  equations  are  identical  approximations. 

Plane  Stress 

The  governing  equilibrium  equation  in  the  x-direction  for a body  in plane s t r e s s  is 
given by equation (31). The  central  finite  difference  approximation  to  equation (31) is 

1 
h2 
- 

1 - u  

1 - P  

2a2 

u+* 
8ah2 

Y 

tx 
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APPENDIX E - Continued 

The  corresponding  finite  element  equation  using  rectangular  elements  and  the  same 
nodal spacing is 

- 1 
h2 

1 - p 4 2  + p2) 
8 12 

Linear edge displacement  model 

The  Taylor series expansion of the  finite  element  equations  about  the  point i , j  can be 
written as 

1 

Study of equation  (E7)  shows  that  the  finite  element  and  finite  difference  equations 
for equation (31) are related by 

E,(u,v) = D,(u,v) + clh 2 A% 
Ax2 Ay2 

where E,(u,v) and D,(u,v) are the  element  and  difference  operators,  respectively, 
and  where  the  central  finite  difference  operator  for u is '=YY 

A4u - 1 
Ax2 Ay2 a2h4 
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APPENDIX  E - Continued 

A similar  investigation of the  y-direction  equilibrium  equation  gives  the  relations 
between\ the  element  and  difference  equations  for  equation (32) 

\ 

E~(u ,v )  = D~(u,v) + Clh 2 A4v 
Ax2 Ay2 

where  Ey and Dy are the  corresponding  element  and  difference  operators.  Equa- 
tions (E8) and (E10) suggest  that any set of consistent  finite  element or finite  difference 
operators for a rectangular  mesh  where  the  variables are the  displacements at the  nodes 
are related by 

where  the  quantities ci are constants.  Usually as a result of symmetry  in  assumptions 
on behavior of u  and  v  these  quantities ci will be related by 

- c1 = c4 

c2 - = c3 -1 - 

If Ei = 0, the  element  operator  becomes the standard  central  finite  difference  operator. 

Since  these  approximations all have  the  same  error of order h2,  the  element  and 
difference  equations  converge at the  same rate. Thus  the  relative  accuracy of the  various 
approximations  will  depend on the  problem  solved. If the  twist  terms u,xxyy  and 

the  finite  difference  answers.  For  example  consider  the  problem  treated  previously by 
finite  element  approximation,  namely, a square  plane stress plate  subjected  to  an  inplane 
harmonic  loading  in  the  y-direction. A solution to  this  same  problem by central  finite 

'=YY are large  for a problem,  the  finite  element  answers  will be less accurate  than 

differences  gives  the  errors 
and eV as 

E U  = 

resulting  from  the  finite  difference  approximations eU 

- h . r r m n  2 2  2 2  (11 - 2 p  + 31.2) 
24a2(1 - p)(m2+ n2) 
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APPENDIX E - Continued 

The following table  compares  the  error magnitude of the  finite  element  results 
with finite  difference  results for m = n  and for Poisson's ratios p = 0 and 0.3: 

p = o  p = 0.3 

euN2 

1.97  1.15 2.26  1.44 Linear  edge  displacement 
2.40 1.85 2.60  2.06 Linear stress 

-0.67 -3.13 0.21 -2.26 Finite  difference 
evN2 euN2 evN2 

The  results  indicate  that  neither  the  finite  element  nor  the  finite  difference  method is 
clearly  superior for the  approximate  solution  to  plane stress problems. 

Beam  Element 

When bending is introduced  the  correlation  between  finite  difference  and  finite ele- 
ments is more complex.  This  complexity is caused by the  introduction of rotation  vari- 
ables at the  nodes  in  the  finite  element  procedure,  whereas  finite  difference  methods are 
not usually  developed  on  that  basis.  Some  correlation  can  however  be  made  for  the  simple 
beam.  Consider  the  beam  equation 

,iv = % 
E1 (E16) 

The  fourth  derivative  at a point i can be  approximated by using  data only at  the  points 
i - 1, i, and i + 1 by passing a fifth-degree  polynominal  through  these  three  points  and by 
expressing  this  polynominal  in  terms of wi and  8i,  where 8i is the  derivative of the 
function at the node  point 

+ ei-l + 4ei + 
4h4 
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APPENDIX  E - Continued 

Differentiating w(x) four  times  and  evaluating it at point i gives 

Substitution of equation  (E18)  into  equation (E16) gives a finite-difference  equation  which 
is identical  with  the  finite  element  equation for vertical  equilibrium.  There  remains 
however  to relate the  moment  equilibrium  finite  element  equation  to  finite  differences. 
This is done by recognizing  that  the  moment  finite  element  equation is a constraint 
between  slope  and  displacement  variable.  This  side  constraint  between  these  variables 
can  be  written  exactly as 

P i+l 

Approximating  the  integral  in  equation (E19) by Simpson's  one-third  rule  gives 

Comparisons  show  that  equation  (E19) is identical  with  the  moment  equilibrium  finite 
element  equation.  The  implicit  use of the  Simpson's  integration  formula  indicates why 
the  finite  element  approximation has greater  accuracy  and a higher  order of e r ro r ,  
namely,  because  the  error in Simpson's  rule is of order h5,  whereas  central  difference 
approximations  are of order  h  2 . Some  comparison of the  relative  accuracies of the 
standard  central  difference  and  finite  element  approximations  can  be  determined by con- 
sidering  the  simply  supported  beam  example  subjected  to a harmonic  loading.  The  cen- 
tral difference  approximation  to wiv is 

which  when expanded  in a Taylor  series and  applied  to  the  harmonic  load  example  prob- 
lem is 

Solution to  equation  (E22) is 

w = wex[l + E d) (E23) 
where wex is the exact solution  and Ed the   e r ror  due to  the  finite  difference  approxi- 
mations 
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APPENDIX E - Concluded 

where Nd is the number of finite  difference  segments.  Note  that  the  finite  difference 
e r r o r  is proportional  to 1/Nd2 whereas the finite  element  error is proportional  to 
l/N4. (See eq. (19).) Thus  the  finite  element  approximation is more  accurate  than  the 
finite  difference  approximation  for  the  same  element  size. On the  other  hand,  the  ele- 
ment  equations lead to  twice as many  variables as the  difference  equations. For a 
l-percent  error  in this example  approximately  two  finite  element  segments  and 13 finite 
difference  segments are required. 
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TABLE I.- FINITE  ELEMENT  DISCRETIZATION  ERROR 

(a) One-dimensional  elements 
I I 

I Nodal 1 Governing E r r o r   t e r m s  
(appearing in  left-hand 

side of equations) 
Element 

~ variables 1 differential  equations 

Bar: I 

Unequal segments {u) ~ 

~ 

, , - $1 - ff)U"' +-  - uiv + . . . 
h2 12 t l + f f  + ff3) 

I 

Equal  segments i {u} u" +P= 0 h2 . + - u l V + .  . . 
i EA 12 

Beam 

0 = w' + k W V + .  . . 
180 

Arch: 

Straight  segments 

Curved  segments 

L 

+ O(h2) 

E I w i V + Z " + K ) + E A ( - $ + $ ) - q = O  ( R2 R4 

+ O(h2) 

+ O(h2) 

12 

+ o (h4) 



"-- 
Element 

tectangle,  linear 
stress  distribution 

Zectangle, linear 
edge  displacement 

iight  triangle, 
pattern A 

Right triangle, 
pattern B 

Right triangle, 
pattern C 

Equilateral  triangle 

TABLE I.- FINITE  ELEMENT  DISCRETIZATION  ERROR - Continued 

(b) Plane stress elements 

Variables Governing differential  equations 

B 

Error  terms (appearing  in left-hand side of equations) 

+ 3a2u,my + 2a3u,xyyy + v,- + a2v,yyyy] + . . . 

h2 



Elemen 
~ ~ . 

Melosh 

ACM 

Papenfus 

Variables 
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TABLE II.- ERROR  TERMS FOR HARMONIC RESPONSE  EXAMPLES 

Element 

Beam: 

q = q sin - rnnx 
O L  

w = Wex(l + E )  

Wex = %(-Lysin - mnx 

w2 = wex2(1 - E )  

E1 m r  L 

m 

Arch: 

p = o  q = q   s i n =  
O R  

Curved  segments: 

u = Uex(l  + E U )  

w = wex(l + EW) 

-q0R4 

Erm(m2 - I) 

q 0 ~ 4  . 

Uex = cos - mx 
2 R  

Wex = 
EI(m2 - d2 

sin - 
R 

Straight  segments: 

u = iiex(l + Eii) 

w = wex(l + Ev) 
- 

E r r o r   t e r m s  

Curved  segments: 

-2 
E U  = - I ,  

12N2(m2 - 1)'(g)2 

E W  = - .2 
12N2(m2 - l)'($Y 

Straight  segments: 

E; = 06) 
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TABLE 11.- ERROR  TERMS  FOR HARMONIC RESPONSE EXAMPLES - Concluded 

Element   Er ror   t e rms  

Plane  stress  rectangle:  

Px = 0 

p = p s in  E s in  F 
Y O  a 

u = uex(l + eu) 

v = vex(l + Ev) 

Linear  stress  distribution: 

e - h2n2m2n2(5 - 2 p  + p2) 
U -  

12a2(m2 + n2) 

+ 13 - 16p + 3p2  ,6,2 + 16 - 26p + 11p2 - Z p 3  + p4 ,4,4 + 6 - 14p + 9p2 - 2 p 3  + p4 ,2,6 + (+) 2 ,8 
e -- h2n2 2 4  4 
V -  

4 
6a2(1 - p )  m6 + 5-1.1 m4n2 + (Z - p)m2n4 + LE n6 

2 2 

Linear  edge  displacement: 

e - h2n2m2n2(7 - l o p  - p2)  
U -  

i 24a2(m2 + n2)(1 - p) 

l-p + 11 - 14p - p2 ,6,2 + 27 - 45p + 9p2 + p3 ,4,4 + 11 - 25p + 13p2 + p 3  ,2,6 + (u) 2 
h2n2 

By=- 2 4 8 8 2 
6a2(1 - p )  m6 + LE m4n2 + (Z - p)m2n4 + l-p n' 

2 2 

Rectangular  plate: 

q = q  o a  B i n E s i n F  

w =  We.(' + E  1) 

w2 = wex2(1 - e 2) 

Wex - 2 Dn4(m2 + n2)2 
~ a 4  

' Melosh: 

ACM 

Papenfuss: 

e 2  - -m2n2 [ 34  5416h2n2 
m2+n2-+-] 



(a) Cont inuous bar. 

(b) Approximation  of  continuous  bar  by  f inite  elements. 

(c)  Forces  and  displacements in bar  f in i te  e lements.  

(d) Equi l ibr ium  at  ith gr id   po int  in f in i te   e lement  assemblage. 

F igure 1.- One-dimensional  bar  and  i ts  f ini te  element  representation. 
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Figure  2.- Beam  element. 
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Continuous  arch  structure 

Straight  element  approximation Curved  element  approximation 

Figure 3.- Arch approximated by straight and curved  elements. 
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Linear edge displacement model 

Figure 4.- Plane  stress  element. 

R 

-ELI Y 



ul 
0 

P " 1  
7 7 

1 
ah 

Pattern A psttern B Pattern C 

Figure 5.- Triangular  finite  element  patterns. 



It 

@> 
Figure 6.- Equilateral triangular finite element  pattern. 



Figure 7.- Plate bending  element. 



Figure 6.- Equilateral triangular finite element  pattern. 
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Figure 7.- Plate bending element. 


